If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2+-9t+8=0
We add all the numbers together, and all the variables
t^2-9t=0
a = 1; b = -9; c = 0;
Δ = b2-4ac
Δ = -92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-9}{2*1}=\frac{0}{2} =0 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+9}{2*1}=\frac{18}{2} =9 $
| 2x+3+2x-6=13 | | 6+x+12=2x+29 | | 2x-12+10=x+9 | | 45w+110=0 | | -4+2+12=2x-3 | | 9+x+3=7x | | 7x+1+1+5x=14 | | x-5+6=2x-7 | | 2x-5+-10+2x=13 | | 10+2x-4=4x-3 | | 11+x+3=3x-2 | | 0=-1/2.x+4 | | x+8+x+3=9 | | 6x-1+7=11x+1 | | 2x+24+x+19=16 | | x+18+2x+20=14 | | 6+x-3=2x+1 | | 11+x-3=2x-3 | | -6x=4x^2-4 | | 2e-3(0)=24 | | 24k+3k-16k=5 | | 189-x=67 | | 175=-w+38 | | -2+20j-4j+6j=10 | | 180=23-u | | 23(t+-64)=-667 | | n/30+630=651 | | h/24+394=405 | | 20b-10=470 | | 24+3k=93 | | -4(v-68)=-96 | | -6(x+2)-14=27+1 |